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A rocket trajectory simulator 
using high-school physics


Introduction
The flight of a model rocket is powerfully influenced by aerodynamic drag (‘air resistance’). In fact, if you set drag to zero in the following sim you’ll find that the rocket will go approximately nine times higher, the air is seriously thick at ground level.

Unfortunately, the acceleration of a rocket depends strongly on the drag force, but the drag force depends on velocity, which is calculated from acceleration. So this is a looped (iterative) calculation as the answer (velocity) depends on the acceleration, but the acceleration depends on the velocity! You can’t do the sum on pen and paper.

This is why your physics teacher avoids aerodynamic drag like the plague (which explains why a lot of physics experiments that neglect air resistance go wrong). There’s also the fact that many physics lessons haven’t changed in content since way before the time of the understanding of aerodynamic drag.

However, with a Microsoft Excel spreadsheet, or some programming in your favourite programming language, you can code-up a surprisingly accurate simulation of the flight (trajectory) of a rocket that you can take out to the launchpad on your laptop or tablet. This spreadsheet is included in the zip file along with this document.

We’ll code the flight of a rocket-vehicle powered by an Estes C6-5 motor in Excel. However, I’ve given you the data to sim a flight anywhere up to 1000 Km and Mach 8 using a much larger engine.

The pictures of Excel shown later might differ from your screen depending on what version of Excel you have, but the formulae are the same.

Every rocket society has its own sim program. The one we at Aspirespace have, started out just as I’ll describe in this document, but we’ve added and extended it (keeping the same physics) so it will now sim the launching of satellites into orbit.

Words in bold are listed in the glossary at the end of the paper.


Calculus
[bookmark: _GoBack]The heart of any simulation of the trajectory of a moving body involves calculus, which is why Isaac Newton had to co-invent calculus. When you’re taught calculus towards the end of high-school you may wonder what it’s for. This is exactly what it’s for, Newton designed it for trajectory simulation.

If you haven’t come across calculus yet, I’ll introduce you. Calculus is the mathematics of two types of process called differentiation and integration. One is the reverse of the other: for example, if you differentiate the velocity of an object, the answer is its acceleration. Or in reverse, if you integrate its acceleration, you get its velocity.

This is written as:      (differentiation)   and     (integration)

where V is velocity, a is acceleration, ‘d’ means vanishingly small change of, so dt is a vanishingly small change of time.


You’ve actually been using calculus right through high-school physics, though you probably weren’t aware of it. Do the following equations look familiar (Δ means ‘change of’):

   (differentiation)   and     (integration)

Now both of these high-school equations assume that the velocity or acceleration don’t change with time (are constant). However, when you sim something, you break its trajectory up into hundreds of time-steps that are so small that you can pretend that the velocity or acceleration don’t change over the time step (they do change from step to step though). It’s a fudge, but it works to surprising accuracy, and it means that you can use these familiar physics equations. Breaking the trajectory into many little time steps is called numerical integration.

We’ll start with the acceleration of the rocket, then integrate it (V=U+at) to get velocity, then integrate the velocity to get height (distance = speed times time).

Integration has many uses in rocketry:

The mathematical symbol for integration is a sort of long ‘S’ shape. So we write:

  

where a is acceleration and V is velocity. We integrate from the start time (engine ignition) to whatever is the end-time at which apogee occurs. We say that ‘velocity is the time integral of acceleration’.

Integration doesn’t only work for calculating velocity, it has further uses in simulation:
[image: ]We can integrate (vertical) velocity in exactly the same way and the answer is the height the rocket has reached after some time has passed, i.e. ‘distance is the time integral of velocity’:

 

Furthermore, if you draw a graph, in this case the thrust curve of our Estes C6-5 rocket motor, then if you carefully measure the area ‘under the curve’ (between the curve and the X-axis) then this area, shown in yellow here, is numerically equal to the rocket’s Total impulse, i.e. ‘Total impulse is the time integral of thrust’:

     

where F is the thrust.

The area under a curve is numerically equal to the integration of that curve.

For example, if we look at the area ‘under the graph’ of nozzle mass flow rate  (the flow of gas mass out the nozzle, which I’ll talk more about shortly) we get the total gas mass which was equal to the propellant mass just before ignition, so: ‘total propellant mass is the time integral of nozzle mass flow rate’:

 

The nozzle mass flow rate curve 
To sim the trajectory of a rocket, you need a thrust curve, which you can get off the web or on the packet of motors. But you also need a nozzle mass flow rate curve otherwise you won’t know how the vehicle’s mass drops with time. You need this mass information in order to work out the acceleration, using Newton’s 2nd law.

Newton’s 2nd law: Newton originally expressed this law as “The differentiation with time of the momentum of an object equals the force applied to it divided by its mass.” Or, the force F (in Newtons) equals the differentiation with time t (seconds) of mass m (kilograms) times velocity V (metres per second), where the quantity m times V is called momentum. This expanded derivation is of more use to rocketeers:
This differentiation is written as 

Now in the special case of a mass that doesn’t change with time, then m can be taken out of the brackets, and the equation collapses into the familiar high-school physics form:

    

because the differentiation with time t of velocity V is simply acceleration:  as we saw earlier.

In contrast, with a rocket, the velocity Ve of the gas mass exiting the nozzle doesn’t change with time (okay, it changes slowly over the burn) so can be taken out of the brackets, but mass is continually being lost by the engine out the nozzle, so mass m is rapidly changing with time, so:

      

where the dot above the ‘m’ was Newton’s symbology for ‘differentiated with time’.

From the law of conservation of momentum, if mass is continually lost from the engine, then the engine (plus rocket) changes its momentum (its velocity) in the thrust direction.
So the quantity  is known as the momentum thrust.

So:  thrust = nozzle mass flow rate  exhaust velocity

All the gas mass leaving the nozzle (nozzle mass flow rate) was once solid propellant, so the nozzle mass flow rate tells you the rate that the propellant is being used up. (Yes, the solid changes to a gas, but its mass doesn’t change).

If you have a thrust curve for a rocket motor, but not a mass flow rate curve, then there’s a simple assumption you can make that will give you this mass curve: assume that the exhaust velocity of the gasses leaving the rocket is constant over the burn time. Most rocketry sims make this assumption as there’s no other information to go on.

So if the exhaust velocity is constant, then from the above thrust equation, the shape of the thrust curve will be identical to the shape of the nozzle mass flow rate curve. 
The only difference will be in the ‘y’ or vertical axes of the two graphs.
[image: ]For example, here are the two graphs for the Estes C6 solid motor:

The graphs are identical, I’ve laid one on top of the other and it is, of course, a perfect match.

The only difference are the ‘y’ axes: the thrust uses the left hand vertical axis while the nozzle mass flow rate uses the right hand vertical axis

To obtain the mass flow rate curve I used integration.

As I stated earlier, the Total impulse is equal to the area under the thrust curve. (The yellow area between the time axis and the curve.)

Similarly, the yellow area under the mass flow rate curve is equal to the total propellant mass at the start of the burn.

Because the two graphs are identical except in y-axis scaling, then the areas under their curves are related:



and:    

which you can prove mathematically by integrating the top and bottom of the fraction on the left-hand side of the rearranged trust equation: 



with respect to time:



where = the average (constant) exhaust velocity over the burn.




So now that we have the average exhaust velocity, then simply re-arrange this equation to get:


Then all we have to do is to numerically integrate the nozzle mass flow rate to find out how the mass of the motor drops with increasing time.

Here’s the Excel spreadsheet I used (see the ‘Engine’ workpage of the spreadsheet included in the zip file):
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The only information we need is the thrust curve data (force versus time), which I’ve made bold above, and the propellant mass at the start of the burn, which is 10.8 grams (0.0108 kilograms) from data off the web.

The first step is to calculate the uneven time-steps: the thrust curve data (from www.thrustcurve.org) jumps in uneven time-steps. That’s okay, as long as we know what the time-steps are. In cell B9 I typed in ‘=A9-A8’   (I didn’t type-in the ‘ ’) 

The next thing to do is to get the Total impulse, which is equal to the area under the thrust curve. For this I used numerical integration, but I used a different integration equation (called trapezoidal integration) to the ones we saw above. This one is slightly more accurate for this particular problem where I’m using the same time-steps as came with the thrust curve:

In cell D8 I typed in ‘0’  (zero)
In cell D9 I typed in ‘=D8+0.5*(C8+C9)*B9’ which is exactly the area of a vertical strip under the thrust curve that is one time-step wide.
(Remember that Excel uses the ‘*’ sign instead of the ‘’ sign for multiplication.)

Then I dragged this cell down to D29. Each cell adds to the one above (adds all the vertical strips under the graph) until in cell D29 I got the Total impulse. I highlighted this cell in yellow.

With the Total impulse and the propellant mass of 0.0108 kilograms, I could then calculate the average exhaust velocity using the equation given previously:

 

 so in cell E8 I typed in ‘=D29/0.0108’    (the ‘/’ sign means ‘divide by’)

This gave me the answer of 817.9 metres per second (highlighted in yellow). This is actually a really low value, but then the C6 motor only has a cardboard combustion chamber casing for safety in case it explodes, so it can’t take a high combustion chamber pressure. (Higher pressure squirts out a higher gas velocity = better performance).

In the next cell (F8) I converted the average exhaust velocity into Specific impulse just for the sake of it: in cell F8 I typed ‘=E8/9.81’

Now that I had the average exhaust velocity, I could use the equation given earlier to get the nozzle mass flow rate: 



in cell G8 I typed in ‘=C8/E$8’ and dragged this cell down to G29. The dollar ‘$’ signs mean ‘use this cell E8 for all the equations in this column’ (actually, use column E, cell 8)

Finally, all that remained to do was to numerically integrate the nozzle mass flow rate column to get the data on how the mass dropped with time.

In cell H8 I typed in the start propellant mass of 0.0108 kilograms.
Using the same trapezoidal integration equation as above, I typed in cell H9:
 ‘=H8-0.5*(G9+G8)*B9’ and then dragged this cell down to H29 





[image: ]Copying from columns A, C, and H of the spreadsheet, the Estes C6 data is then given here:

With the thrust curve data and the propellant mass curve data, you can then sim the motor and then the trajectory as we do in the next section below.


The simulation

The sim starts with the rocket vehicle’s acceleration.
From Newton’s law a=F/m  then we need the thrust and the mass of the rocket-vehicle, and how these change with time.

Now the time-steps given with the thrust curve (Cells B9 to B29 on the ‘Engine’ workpage of the spreadsheet) are all over the place. We want equal intervals of time; a time-step of 0.05 seconds is small enough to capture the detail of the thrust curve graph, but not too small that it takes forever to reach apogee. So in Cell B10 of the ‘Sim’ workpage of the spreadsheet, I set the time-step as 0.05. This is then used by column B to set the sim time to increase in steps of 0.05 (If you were simming an engine with a much longer burn you could use larger steps of 0.1 or 0.5 seconds).

Unfortunately the times given in ‘Sim’ workpage column B don’t correspond with the times given in the ‘Engine’ workpage column A (which are all uneven). For example, our first ‘Sim’ workpage time of time = 0.05 seconds occurs somewhere between ‘Engine’ workpage cells A9 (0.031 seconds) and A10 (0.092 seconds), so we need to interpolate. Interpolation is the process of getting data off a graph in-between data points, in this case in-between ‘Engine’ workpage rows 9 and 10


Linear interpolation

Linear interpolation interpolates between data points by assuming that the data points are joined by straight lines, which is the simplest way, physically and mathematically, to join the points on a graph.

I found a compact Excel linear interpolation function on Blue Leaf Software’s website:
http://www.BlueLeafSoftware.com/Products/Dagra/LinearInterpolationExcel.php							
Their formula, which I typed-in in ‘Sim’ workpage columns C and D is lengthy, and I’m not entirely sure how it works, but I’ve tested it and it does. I typed it in cells C17 and C18, then dragged them down the page to get the variation of thrust and propellant mass with time.

When I got to row 55, the interpolation formula stopped working because I’d gone off the end of the graphs (time was greater than the burning time of the motor). So from then on I typed in ‘zero’ for the thrust and the propellant mass as time increased.

The propellant mass is added to the empty mass in cell C10 to calculate the total mass in column E. (Empty mass is the mass of the rocket vehicle empty of propellant).


Acceleration

The sim needs a slightly more complicated form of Newton’s 2nd law for calculating the acceleration: the force is still divided by the mass, but the force is actually the total of all the forces acting on the rocket-vehicle. So as well as the thrust force, we’ve got to include the weight force W and the aerodynamic drag force D.

So the more complete 2nd law equation is:

    or    

where we know that the weight W = mg

You subtract weight and drag rather than adding them because they’re vectors that are acting downwards rather than upwards, so they’re reducing the upward acceleration, slowing the vehicle down.

You might have noticed that in the equation above we’re dividing the weight (mg) by m:



From algebra, you’ll know that because m appears on both the top and the bottom of this fraction then it can be cancelled out. So this gives:




The drag loop
But now we have a problem.

Remember that drag depends on velocity. But we don’t know what the velocity is, we haven’t worked it out yet on the spreadsheet. We can’t work out the velocity until we’ve worked out the acceleration, but we can’t work out the acceleration until we know the drag, which needs to know the velocity. We’re stuck in a loop.

We need to use a sim engineer’s trick to break this loop (I happen to be a professional sim engineer): what we’ll do is to always use the velocity and drag we calculated last time (from the previous time-step) to work out the acceleration for the current time-step. 

This is somewhat of a cheat, but it gives very nearly the right answer (to high precision). All sims of all complexity use this same trick.

It works because the time-step (0.05 seconds) is small enough that the velocity hasn’t changed much from the last time-step to the current one.

At time zero there is no previous time, so we just set velocity to zero (it is zero at lift-off) and so at time zero the drag is zero.

So ‘Sim’ workpage cell F17 we set to zero. Then in the cell below, cell F18, we put in Newton’s 2nd law above, but using the drag calculated in row 17, the drag from the previous time step.
(As I was constructing this spreadsheet, the drag column ‘S’ just began as a column of zeros.)

Gees
Just to be informative, in column G we want to know the acceleration in gees (multiples of gravity). So we need to change the acceleration from metres per second per second into gees. The formula to get gees is:

   where one g is 9.81

We’ve divided column F by 9.81 to get gees, but why have we then added 1? 
Just suppose for a moment that a spacecraft was just hovering, neither rising nor falling, its thrust was exactly equal to its weight. Then the vertical acceleration on the spacecraft would be zero. But for you if you were sitting in the spacecraft, you’d be sat on a seat that wasn’t moving. All the parts of your body would be pulled downwards by gravity, so you’d feel one gee within your body, it’d feel just like sitting on a seat on the ground.

So the gees you feel within a spacecraft are one gee more than the spacecraft experiences.


Velocity
Now we use high school physics:



To calculate the velocity, which goes in column H.


Height
Again resorting to high school physics:

Distance = speed × time

To calculate the height, which goes in column I.


The atmosphere
Now we use columns K to S to calculate the drag in column S.

The equation for aerodynamic drag is:

 

where  is dynamic pressure; we’ll work out the dynamic pressure first in column R.

S is the cross-sectional area of the thickest part of the rocket vehicle, which comes from cell G10, which is calculated from cell D10.

Cd is a number termed the drag coefficient (more on this shortly).

For the dynamic pressure equation we need to know ρ, the density of the air. Air density (and pressure) decrease as we ascend the atmosphere, getting ever thinner until at 100 kilometres altitude (above sea level) we draw a line and refer to that above it as Space.

The workpage ‘The atmosphere’ contains data for the Earth’s atmosphere up to 1000 kilometres.

Again, we’ll use linear interpolation on the graph of air density (which you’ll remember joins data points with straight lines). We’ll use the ‘Sim’ workpage height column I to interpolate with.

It so happens that the density decreases with increasing height in a manner that is very nearly an exponential decay. This means that approximately every 4.9 kilometres up, the density halves, then halves again, and so on. This also means that the biggest changes occur at the bottom of the atmosphere, so even with a mere C6-5 powered rocket vehicle, there will be significant changes in density over its flight.

The reverse function on Excel (or on your scientific calculator) of an exponential function (ex) is a natural logarithm function (Loge or ‘Ln’). If you plot the natural logarithm of an exponential decay, the result is a graph with a straight line rather than a curve. As you can see on the ‘Log_e atmospheric density versus height’ graph on ‘The atmosphere’ workpage, it’s almost a straight line, so it makes sense to linear interpolate (join points with straight lines) off of this graph as it’s almost straight already.
So we interpolate height with ‘The atmosphere’ workpage column C and put the result in ‘Sim’ workpage column K. Then in column L we take the anti-logarithm (also known as the exponential) of column K to get the actual atmospheric density.


Mach number
In ‘Sim’ workpage column M we linearly interpolate speed of sound data from ‘the atmosphere’ workpage column D. This is used in in ‘Sim’ workpage column N to calculate the vehicle’s Mach number as:

  

where the rocket vehicle’s airspeed through the air is the same as its velocity, assuming there’s no wind.


Drag coefficient
Now that we have the Mach number, we can linearly interpolate with it to get the drag coefficient, from the ‘Drag coefficient’ workpage. As you’ll see from the ‘Drag coefficient’ workpage, there are two columns for drag coefficient: one for when the rocket is thrusting called ‘power on’, and one for when the rocket burns out called ‘power off’. The reason these two graphs are different is because the rocket exhaust fills the hole caused at the rear of the vehicle by the rear of the engine and its nozzle. When the rocket burns out, this hole causes a surprising amount of drag, called ‘Base drag’.

In ‘Sim’ workpage column Q we decide which of the two graphs to use: power on data when the engine is thrusting, and then the power off data from row 55 downwards when the engine burns out.

Finally, with the drag coefficient and atmospheric density, we can calculate dynamic pressure and hence the drag, in ‘Sim’ workpage columns R and S.

This completes the sim.


Gravity
Well, almost. 

For a sim of a C6-5 rocket vehicle, it only reaches an apogee of 308 metres above the pad (which I’ve highlighted in yellow in ‘Sim’ workpage cell I174. Notice how the velocities in column H go negative from row 175 onwards because velocity is a vector, and now its direction is downwards instead of upwards).

Over this 308 metres change in height, gravity won’t change noticeably, and you could just put ‘9.81’ into ‘Sim’ workpage column T.

But I’ve included Newton’s gravity equation in column T which will allow you to calculate gravity for rockets that go much higher, or start on a balloon at high altitude.

Newton’s gravity equation is:

 

Where Earth’s gravity constant  = 3.986005 × 1014, RE is the mean radius of the Earth which equals 6371008.8 metres, and h is the height you’re at above the Earth’s surface in metres.
Accuracy
How accurate is the sim? The pertinent question is, how accurate does it need to be? My rocket vehicles carry an RDAS flight computer in the nosecone that measures velocity and altitude, but its pressure-sensor can only measure height to about plus or minus 8 metres. So there’s no point in my sim being more accurate than that.

This Excel sim should be of about that accuracy. Even NASA’s sims, which use exactly the same methods and equations, but more robust integration equations, won’t be any more accurate.

What determines the accuracy of a sim is the drag data, and drag data is notoriously vague; good to about plus or minus five percent with luck.

Also, the atmosphere graphs of density and speed of sound assume a warm spring day in Europe or North America. On a hotter or colder day, the graphs of the real atmosphere will be different, though you can correct for this if you can get accurate weather data.


Integration explosion
The simple high-school physics integration equations we used in this sim are numerically wobbly. If upset, the answers can explode to enormous numbers that break the spreadsheet (you’d see cells filled with ‘N/A’ which is an error message).

What upsets these integration equations are sudden large changes in acceleration occurring from one timestep to the next. This can be caused by the thrust and propellant mass suddenly dropping sharply to zero over one timestep, which it did do here, but we got away with it. If this happens to you, decrease the timestep (cell B10) greatly so that the drop to zero thrust or mass occurs continually over several rows. You can always increase the timestep again further down the workpage once everything’s settled down.

Opening a parachute not at apogee (at non-zero airspeed) would cause a huge drag force to suddenly appear which would certainly break the sim. The way to deal with this is to stop the sim, then start a new sim from the time that the parachute is fully open. Drop the ‘chute from zero airspeed. As a parachute descent quickly attains a constant terminal velocity, a sim isn’t required anyway.



Glossary

Apogee: the Apoapsis (highest point in the trajectory) above the Earth. From the Latin Apo Geos ‘furthest from Earth’.

Specific impulse: a measure of performance of rocket engines equivalent to the ‘miles to the gallon’ metric of cars. It is equal to the thrust generated per unit weight of propellant burnt over 1 second. The units of Specific impulse are seconds.

Speed of sound: also known as sonic speed or Mach 1. The speed that weak pressure disturbances travel through the air.

Terminal velocity: As a falling object accelerates under gravity in an atmosphere, its drag will increase until a point is reached where the drag force equals the object's weight, and the net acceleration is zero, resulting thereafter in a constant vertical velocity known as terminal velocity. The terminal velocity is simply calculated by rearranging the drag equation as:

 

Total impulse: the integral of thrust with time, or the average thrust of the engine times the burn time. It is a measure of the performance of the rocket, as the overall increase in velocity (ΔV) of the vehicle is related to its Total impulse through Newton’s 2nd law.

Velocity: the vector form of speed.
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