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The Thrust Optimised Parabolic nozzle 
 

Introduction 
In the early 1950’s, rocketeers attempted to devise ‘the perfect nozzle’: one that would cause 
the least thrust losses. They used the semi-algebraic Method of Characteristics (of supersonic 

flow) to devise such a nozzle, for whatever nozzle expansion ratio ϵ was required. 

 
Unfortunately, at large expansion ratios, this nozzle was far too long, resulting in excess 
nozzle mass. 
 
Rao in America and Shmyglevsky in Russia found a way to modify this method in order to 
produce an optimum nozzle that was much shorter: it resembled a church bell and was hence 
known as a ‘bell nozzle’. 
 
For ease of use, Rao measured the lengths of his resulting nozzles as fractions of the length 
of a standard 15 degree half-angle conical nozzle which has length: 
 

𝐿𝑁_𝑐𝑜𝑛𝑒 =
(√∈−1) 𝑅𝑡

tan(15)
     equ. 1    where Rt is the radius of the throat. 

 
So an ‘80% bell’ would have a length of 0.8 times this length. 
 
Rao was clearly also schooled in traditional geometry. He was able to spot that the bell part of 
his bell nozzles could be approximated very closely by a skewed parabola allowing us to 
quickly sketch his nozzles with negligible loss of thrust performance. 
 
These sketched approximations are known as Thrust Optimised Parabolic (TOP) nozzles, 
and have found use on a variety of actual launch vehicles because they perform better when 
over-expanded at ground-level altitude than the actual optimised bell nozzle (flow separation 
from the TOP nozzle wall is delayed at high back-pressure). 
 
Rao’s parabolas are known in Europe as quadratic Bézier curves, after French car bodywork 
draughtsman Pierre Bézier. Bézier curves are now used extensively in computer graphics. 
 
The shape of the bell nozzle changes only minutely with the propellants used (varying ratio of 
specific heats γ) so one TOP nozzle methodology fits all propellants and is described below. 
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The geometric approach 
 
Construction 
The ‘Rao nozzle’ starts with Rao’s preferred throat geometry, presumably a Rockedyne 
(where he worked) optimisation. 
 

 
 
Two circular arcs are drawn: 
 
The first curve, of radius 1.5 Rt, is drawn from an angle of say, -135 degrees, to the throat at  
-90 degrees (angles measured from the arc’s origin). Then the second curve of radius 0.382 
Rt is drawn from this angle of -90 degrees to an angle of (𝜃𝑛- 90) at inflection point N. 
(Rt is the throat radius, Re is the exit radius.) 
 
Then a skewed parabola is drawn from point N to nozzle exit point E, tangent to the throat 
curve, and starting at an angle of 𝜃𝑛 and ending at an angle of 𝜃𝑒. 
 

The radius of the nozzle exit:  𝑅𝑒 = √𝜖 𝑅𝑡     equ. 2 
 

and nozzle length 𝐿𝑁 = 0.8 (
(√∈−1) 𝑅𝑡

tan(15)
)     equ. 3     for an 80% bell from equ. 1 

     
Angles 𝜃𝑛 and 𝜃𝑒 were pre-calculated by Roe to match his bell nozzle, and presented as 
graphical data from which the following chart is reproduced for various percent lengths (from 
Ref. 1): 
 



 

 Technical papers   
 

 

Author: Rick Newlands 3 updated: 18/04/17 

 

 
 
(The data for expansion ratios greater than 50 is extrapolated). 
 
A parabola is then sketched-out using an ancient geometrical method for drawing a parabola 
detailed in Ref. 2. 

 
Straight lines are drawn at angles 𝜃𝑛 from point N, and 𝜃𝑒 back from point E, terminating 
where these lines cross at point Q. 
 
Next, both of these lines are divided into an equal number of divisions (four in this example) 
These are labelled a,b,c and e,f,g. 
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A straight line is then drawn from point a to point e, then from b to f, and c to g. These form a 
mesh, the edge of which gives the parabola outline. The parabola is also tangent to the lines 
QN and QE. 
 
Using many more divisions, on a CAD package for example, gives a sharper contour. 
Removing most of the mesh gives a series of straight-line segments: joining the midpoint of 
each segment with a smooth curve such as a CAD spline gives the nozzle contour. 
 

 
Alternately, interpolating along the construction lines gives the same points. In our example 
with four divisions and (4-1) construction lines, the parabola is defined at 1/4 the distance 
along line a-e, 2/4 along line b-f, and 3/4 along c-f. 
 
Efficiency 
At a length ratio of 85% bell, a nozzle efficiency of 99% is reached, and only 0.2% of 
additional performance can be gained by increasing the length ratio to 100%. For this reason, 
85% is often taken as upper bound. At length ratios below 70%, nozzle efficiency suffers. For 
these reasons, the 80% bell parabola is often chosen. 
 
Example 

An 80% bell nozzle with an area ratio of 70 (a typical upper stage nozzle) has angles 𝜃𝑛= 33º 
and 𝜃𝑒= 7º from the above chart. Drawn on a CAD package it looks like this (mesh removed 
for clarity): 
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The mathematical approach 
 
The throat 
The equations of the above circular arcs defining the throat are defined trigonometrically, 
defining the origin of the coordinates as the centre of the narrowest part of the throat: 
 
For the entrant section: 
 
𝑥 = 1.5 𝑅𝑡 cos 𝜃        

𝑦 = 1.5 𝑅𝑡 sin 𝜃 + 1.5 𝑅𝑡 + 𝑅𝑡    equ.s  4        
 
where: −135 ≤ 𝜃 ≤ −90 
 
(The initial angle isn’t defined and is up to the 
combustion chamber designer, -135 degrees is 
typical.) 
 
For the exit section: 
 
𝑥 = 0.382 𝑅𝑡 cos 𝜃       
𝑦 = 0.382 𝑅𝑡 sin 𝜃 + 0.382 𝑅𝑡 + 𝑅𝑡    equ.s  5 
 
where: −90 ≤ 𝜃 ≤ (𝜃𝑛 − 90) 
 
 
The bell 
The bell is a quadratic Bézier curve, which has equations (see Wikipedia): 
 

𝑥(𝑡) = (1 − 𝑡)2𝑁𝑥 + 2(1 − 𝑡)𝑡 𝑄𝑥 + 𝑡2𝐸𝑥     0 ≤ 𝑡 ≤ 1 
𝑦(𝑡) = (1 − 𝑡)2𝑁𝑦 + 2(1 − 𝑡)𝑡 𝑄𝑦 + 𝑡2𝐸𝑦     0 ≤ 𝑡 ≤ 1      equ.s  6 

 
Selecting equally spaced divisions between 0 and 1 produces the points described earlier in 
the graphical method, for example 0.25, 0.5, and 0.75. 
 
Equations 6 are defined by points N, Q, and E (see the graphical method earlier for the 
locations of these points). 
 
Point N is defined by equations 5 setting the angle to (θn – 90). 
 
Coordinate Ex is defined by equation 3, and coordinate Ey is defined by equation 2. 
 

Point Q is the intersection of the lines:  𝑁𝑄⃗⃗⃗⃗⃗⃗ = 𝑚1𝑥 + 𝐶1  and:  𝑄𝐸⃗⃗⃗⃗  ⃗ = 𝑚2𝑥 + 𝐶2   equ.s  7 
 
where: gradient 𝑚1 = tan(𝜃𝑛)  ,  gradient 𝑚2 = tan(𝜃𝑒)     equ.s  8 
 
and: intercept 𝐶1 = 𝑁𝑦 − 𝑚1𝑁𝑥 , intercept 𝐶2 = 𝐸𝑦 − 𝑚2𝐸𝑥      equ.s  9 

 
The intersection of these two lines (at point Q) is given by: 
 

𝑄𝑥 =
(𝐶2−𝐶1)

(𝑚1−𝑚2)
 , 𝑄𝑦 =

(𝑚1𝐶2−𝑚2𝐶1)

(𝑚1−𝑚2)
     equ.s  10  
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